The genome of okra (Abelmoschus esculentus) provides insights into its genome evolution and high nutrient content

Author:

Wang Ruyu1,Li Wei12,He Qiang12,Zhang Hongyu1,Wang Meijia1,Zheng Xinyuan1,Liu Ze1,Wang Yu1,Du Cailian1,Du Huilong12,Xing Longsheng12

Affiliation:

1. Hebei University College of Life Sciences, Institute of Life Sciences and Green Development, , Baoding 071000, China

2. Hebei Basic Science Center for Biotic Interaction, Institute of Life Sciences and Green Development , Hebei University, Baoding 071000, China

Abstract

Abstract Okra (Abelmoschus esculentus) is an important vegetable crop with high nutritional value. However, the mechanism underlying its high nutrient content remains poorly understood. Here, we present a chromosome-scale genome of okra with a size of 1.19 Gb. Comparative genomics analysis revealed the phylogenetic status of A. esculentus, as well as whole-genome duplication (WGD) events that have occurred widely across the Malvaceae species. We found that okra has experienced three additional WGDs compared with the diploid cotton Gossypium raimondii, resulting in a large chromosome number (2n = 130). After three WGDs, okra has undergone extensive genomic deletions and retained substantial numbers of genes related to secondary metabolite biosynthesis and environmental adaptation, resulting in significant differences between okra and G. raimondii in the gene families related to cellulose synthesis. Combining transcriptomic and metabolomic analysis, we revealed the relationship between gene expression and metabolite content change across different okra developmental stages. Furthermore, the sinapic acid/S-lignin biosynthesis-related gene families have experienced remarkable expansion in okra, and the expression of key enzymes involved in the sinapic acid/S-lignin biosynthesis pathway vary greatly across developmental periods, which partially explains the differences in metabolite content across the different stages. Our study gains insights into the comprehensive evolutionary history of Malvaceae species and the genetic basis that underlies the nutrient content changes in okra, which will facilitate the functional study and genetic improvement of okra varieties.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3