VvWRKY5 enhances white rot resistance in grape by promoting the jasmonic acid pathway

Author:

Zhang Zhen1,Jiang Changyue1,Chen Cui1,Su Kai2,Lin Hong1ORCID,Zhao Yuhui1,Guo Yinshan13

Affiliation:

1. Shenyang Agricultural University College of Horticulture, , 120 Dongling Road, Shenyang, Liaoning 110866, China

2. Hebei Normal University of Science and Technology College of Horticulture Science and Technology, , Qinhuangdao 066004, China

3. National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning) , Shenyang 110866, China

Abstract

Abstract Grape white rot is a disease caused by Coniella diplodiella (Speg.) Sacc. (Cd) can drastically reduce the production and quality of grape (Vitis vinifera). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member VvWRKY5 was highly induced by Cd infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and Arabidopsis) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of VvJAZ2 (a JA signaling suppressor) and VvMYC2 (a JA signaling activator), thereby inhibiting and activating the transcription of VvJAZ2 and VvMYC2, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of VvJAZ2 and VvMYC2 activities by VvWRKY5, respectively. When VvWRKY5 was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.

Funder

Shenyang Science and Technology Bureau Funds

Department of Science and Technology of Liaoning Province

Basic research innovation capability enhancement project of provincial colleges and universities

China Agriculture Research System

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3