A constitutive serine protease inhibitor suppresses herbivore performance in tea (Camellia sinensis)

Author:

Ye Meng1ORCID,Liu Chuande1,Li Nana1,Yuan Chenhong1,Liu Miaomiao1,Xin Zhaojun1,Lei Shu1,Sun Xiaoling1

Affiliation:

1. Chinese Academy of Agricultural Sciences Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, , Hangzhou 310008, China

Abstract

Abstract Protease inhibitors promote herbivore resistance in diverse plant species. Although many inducible protease inhibitors have been identified, there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance. Here, we identified a serine protease inhibitor, CsSERPIN1, from the tea plant (Camellia sinensis). Expression of CsSERPIN1 was not strongly affected by the assessed biotic and abiotic stresses. In vitro and in vivo experiments showed that CsSERPIN1 strongly inhibited the activities of digestive protease activities of trypsin and chymotrypsin. Transient or heterologous expression of CsSERPIN1 significantly reduced herbivory by two destructive herbivores, the tea geometrid and fall armyworm, in tea and Arabidopsis plants, respectively. The expression of CsSERPIN1 in Arabidopsis did not negatively influence the growth of the plants under the measured parameters. Our findings suggest that CsSERPIN1 can inactivate gut digestive proteases and suppress the growth and development of herbivores, making it a promising candidate for pest prevention in agriculture.

Funder

Elite Youth Program of Chinese Academy of Agricultural Sciences

Central Public-interest Scientific Institution Basal Research Fund

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3