Developing a highly efficient CGBE base editor in watermelon

Author:

Wang Dong1,Chen Yani1,Zhu Tao1,Wang Jie1,Liu Man1,Tian Shujuan1,Wang Jiafa1,Yuan LiORCID

Affiliation:

1. Northwest A&F University State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, , Yangling, 712100, Shaanxi, China

Abstract

Abstract Cytosine and adenosine base editors (CBEs and ABEs) are novel genome-editing tools that have been widely utilized in molecular breeding to precisely modify single-nucleotide polymorphisms (SNPs) critical for plant agronomic traits and species evolution. However, conventional BE editors are limited to achieve C-to-T and A-to-G substitutions, respectively. To enhance the applicability of base editing technology in watermelon, we developed an efficient CGBE editor (SCGBE2.0) by removing the uracil glycosylase inhibitor (UGI) unit from the commonly used hA3A-CBE and incorporating the uracil-DNA glycosylase (UNG) component. Seven specific guide RNAs (sgRNAs) targeting five watermelon genes were designed to assess the editing efficiency of SCGBE. The results obtained from stably transformed watermelon plants demonstrated that SCGBE2.0 could efficiently induce C-to-G mutations at positions C5–C9 in 43.2% transgenic plants (with a maximum base conversion efficiency of 46.1%) and C-to-A mutation at position C4 in 23.5% transgenic plants (with a maximum base conversion efficiency of 45.9%). These findings highlight the capability of our integrated SCGBE2.0 editor to achieve C-to-G/A mutations in a site-preferred manner, thus providing an efficient base editing tool for precise base modification and site-directed saturated mutagenesis in watermelon.

Funder

Science and Technology Innovation Team of Shaanxi

Natural Science Foundation of Shaanxi Province

Key R&D Program of Shaanxi province

Key-Area R&D Program of Guangdong Province

Earmarked Fund for China Agriculture Research System

National Youth Talent Program

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3