Affiliation:
1. Universitat Jaume I Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. , 46520 Castelló de la Plana, Spain
2. Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF) Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), , Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil
Abstract
Abstract
Environmental changes derived from global warming and human activities increase the intensity and frequency of stressful conditions for plants. Multiple abiotic factors acting simultaneously enhance stress pressure and drastically reduce plant growth, yield, and survival. Stress combination causes a specific stress situation that induces a particular plant response different to the sum of responses to the individual stresses. Here, by comparing transcriptomic and proteomic profiles to different abiotic stress combinations in two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni), with contrasting tolerance to different abiotic stresses, we revealed key responses to the triple combination of heat stress, high irradiance and drought. The specific transcriptomic response to this stress combination in Carrizo was directed to regulate RNA metabolic pathways and translation processes, potentially conferring an advantage with respect to Cleopatra. In addition, we found endoplasmic reticulum stress response as common to all individual and combined stress conditions in both genotypes and identified the accumulation of specific groups of heat shock proteins (HSPs), such as small HSPs and HSP70s, and regulators of the unfolded protein response, BiP2 and PDIL2-2, as possible factors involved in citrus tolerance to triple stress combination. Taken together, our findings provide new insights into the acclimation process of citrus plants to multiple stress combination, necessary for increasing crop tolerance to the changing climatic conditions.
Publisher
Oxford University Press (OUP)
Subject
Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献