Sociogeographical Machine Learning

Author:

Lund Rolf Lyneborg1

Affiliation:

1. Sociology, Aalborg University

Abstract

Abstract This chapter delves into the integration of machine learning (ML) within spatial social science, elucidating its capacity for enhancing the analysis of sociogeographical data. It underscores the distinction between spatial and non-spatial data, emphasizing the importance of spatial context in understanding social phenomena. By exploring various ML methodologies, the chapter assesses their implications for sociogeographical studies, advocating for the incorporation of ML techniques to unravel complex social dynamics within geographical contexts. Through a detailed examination of both unsupervised and supervised learning models, it demonstrates the pivotal role of ML in identifying and categorizing sociospatial phenomena, offering insights into neighborhood effects and the theoretical and practical challenges of applying ML in spatial analysis. The chapter not only showcases the potential of ML to advance spatial social science but also calls for a nuanced understanding of the questions that necessitate ML approaches, positioning ML as a critical tool for future sociospatial research endeavors.

Publisher

Oxford University Press

Reference55 articles.

1. Google street view: Capturing the world at street level.;Computer,2010

2. Constructing typologies through cluster analysis.;BMS: Bulletin de methodologie sociologique,1989

3. Air pollution and health.;The Lancet,2002

4. Geo-located image categorization and location recognition.;Pattern Recognition and Image Analysis,2009

5. Demokratischer Smog? Eine empirische Untersuchung zum Zusammenhang zwischen Sozialschicht und Umweltbelastungen [Democratic smog? An empirical study on the correlation between social class and environmental pollution TT].;Kolner Zeitschrift fur Soziologie und Sozialpsychologie,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3