Renovascular Hypertension Induces Myocardial Mitochondrial Damage, Contributing to Cardiac Injury and Dysfunction in Pigs With Metabolic Syndrome

Author:

Nargesi Arash Aghajani1,Farah Mohamed C1,Zhu Xiang-Yang1,Zhang Lei1,Tang Hui1,Jordan Kyra L1,Saadiq Ishran M1,Lerman Amir2,Lerman Lilach O12,Eirin Alfonso1ORCID

Affiliation:

1. Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA

2. Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA

Abstract

Abstract BACKGROUND Renovascular hypertension (RVH) often manifest with metabolic syndrome (MetS) as well. Coexisting MetS and hypertension increases cardiovascular morbidity and mortality, but the mechanisms underlying cardiac injury remain unknown. We hypothesized that superimposition of MetS induces myocardial mitochondrial damage, leading to cardiac injury and dysfunction in swine RVH. METHODS Pigs were studied after 16 weeks of diet-induced MetS with or without RVH (unilateral renal artery stenosis), and Lean controls (n = 6 each). Systolic and diastolic cardiac function were assessed by multidetector CT, and cardiac mitochondrial morphology (electron microscopy) and myocardial function in tissue and isolated mitochondria. RESULTS Body weight was similarly higher in MetS groups vs. Lean. RVH groups achieved significant stenosis and developed hypertension. Mitochondrial matrix density and adenosine triphosphate production were lower and H2O2 production higher in RVH groups vs. Lean and MetS. Lean + RVH (but not MetS + RVH) activated mitophagy, which was associated with decreased myocardial expression of mitophagy-related microRNAs. MetS groups exhibited higher numbers of intermitochondrial junctions, which could have prevented membrane depolarization/activation of mitophagy in MetS + RVH. Cardiac fibrosis, hypertrophy (increased left ventricular muscle mass), and diastolic function (decreased E/A ratio) were greater in MetS + RVH vs. Lean + RVH. CONCLUSIONS MetS+RVH induces myocardial mitochondrial damage and dysfunction. MetS + RVH failed to activate mitophagy, resulting in greater cardiac remodeling, fibrosis, and diastolic dysfunction. Mitochondrial injury and impaired mitophagy may constitute important mechanisms and therapeutic targets to ameliorate cardiac damage and dysfunction in patients with coexisting MetS and RVH.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3