Angiotensin II and Amyloid-β Synergistically Induce Brain Vascular Smooth Muscle Cell Senescence

Author:

Bai Hui-Yu12,Min Li-Juan1,Shan Bao-Shuai13,Iwanami Jun1,Kan-no Harumi1,Kanagawa Motoi1,Mogi Masaki4,Horiuchi Masatsugu1

Affiliation:

1. Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan

2. Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China

3. Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China

4. Department of Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan

Abstract

Abstract BACKGROUND Amyloid-β (Aβ) induces cerebrovascular damage and is reported to stimulate endothelial cell senescence. We previously demonstrated that angiotensin II (Ang II)-promoted vascular senescence. We examined the possible cross-talk between Ang II and Aβ in regulating brain vascular smooth muscle cell (BVSMC) senescence. METHODS BVSMCs were prepared from adult male mice and stimulated with Ang II (0, 0.1, 1, 10, and 100 nmol/l) and/or Aβ 1–40 (0, 0.1, 0.3, 0.5, 1, 3, and 5 µmol/l) for the indicated times. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. RESULTS Treatment with Ang II (100 nmol/l) or Aβ (1 µmol/l) at a higher dose increased senescent cells compared with control at 6 days. Treatment with Ang II (10 nmol/l) or Aβ (0.5 µmol/l) at a lower dose had no effect on senescence whereas a combined treatment with lower doses of Ang II and Aβ significantly enhanced senescent cells. This senescence enhanced by lower dose combination was markedly blocked by valsartan (Ang II type 1 receptor inhibitor) or TAK-242 (Aβ receptor TLR4 inhibitor) treatment. Moreover, lower dose combination caused increases in superoxide anion levels and p-ERK expression for 2 days, NF-κB activity, p-IκB, p-IKKα/β, p16 and p53 expression for 4 days, and an obvious decrease in pRb expression. These changes by lower dose combination, except in p-IκB expression and NF-κB activity, were significantly inhibited by pretreatment with U0126 (ERK inhibitor). CONCLUSIONS Ang II and Aβ synergistically promoted BVSMC senescence at least due to enhancement of the p-ERK–p16–pRb signaling pathway, oxidative stress, and NF-κB/IκB activity.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3