Affiliation:
1. Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
Abstract
Abstract
Background
Ryanodine receptor (RyR) dysfunction in skeletal muscle (RyR1) leads to malignant hyperthermia, and in cardiac muscle (RyR2) triggers cardiac arrhythmias. We hypothesized that RyR dysfunction in vascular smooth muscle could increase vascular resistance and hypertension, and may contribute to increased atrial fibrillation (AF) in hypertension. Thus, stabilizing RyR function with chronic dantrolene treatment may attenuate hypertension and AF inducibility in spontaneously hypertensive rats (SHR).
Methods
Male SHR (16 weeks old) were randomized into vehicle- (n = 10) and dantrolene-treated (10 mg/kg/day, n = 10) groups for 4 weeks. Wistar Kyoto (WKY, n = 11) rats served as controls. Blood pressures (BP) were monitored before and during the 4-week treatment. After 4-week treatment, direct BP, echocardiography, and hemodynamics were recorded. AF inducibility tests were performed in vivo at baseline and repeated under sympathetic stimulation (SS).
Results
Compared with WKY, SHR had significantly higher BP throughout the experimental period. Dantrolene treatment had no effect on BP levels in SHR (final systolic BP 212 ± 9 mm Hg in vehicle group vs. 208 ± 16 mm Hg in dantrolene group, P > 0.05). AF inducibility was very low and not significantly different between 5-month-old WKY and SHR at baseline. However, under SS, AF inducibility and duration were significantly increased in SHR (20% in WKY vs. 60% in SHR-vehicle, P<0.05). Dantrolene treatment significantly attenuated AF inducibility under SS in SHR (60% in vehicle vs. 20% in dantrolene, P < 0.05).
Conclusions
Stabilizing RyR with chronic dantrolene treatment does not affect hypertension development in SHR. SHR has increased vulnerability to AF induction under SS, which can be attenuated with dantrolene treatment.
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献