Dividing a sphere into equal-area and/or equilateral spherical polygons

Author:

Rezaee Javan Anooshe1,Lee Ting-Uei1,Xie Yi Min1

Affiliation:

1. Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia

Abstract

Abstract Dividing a sphere uniformly into equal-area or equilateral spherical polygons is useful for a wide variety of practical applications. However, achieving such a uniform subdivision of a sphere is a challenging task. This study investigates two classes of sphere subdivisions through numerical approximation: (i) dividing a sphere into spherical polygons of equal area; and (ii) dividing a sphere into spherical polygons with a single length for all edges. A computational workflow is developed that proved to be efficient on the selected case studies. First, the subdivisions are obtained based on spheres initially composed of spherical quadrangles. New vertices are allowed to be created within the initial segments to generate subcomponents. This approach offers new opportunities to control the area and edge length of generated subdivided spherical polygons through the free movement of distributed points within the initial segments without restricting the boundary points. A series of examples are presented in this work to demonstrate that the proposed approach can effectively obtain a range of equal-area or equilateral spherical quadrilateral subdivisions. It is found that creating gaps between initial subdivided segments enables the generation of equilateral spherical quadrangles. Secondly, this study examines spherical pentagonal and Goldberg polyhedral subdivisions for equal area and/or equal edge length. In the spherical pentagonal subdivision, gaps on the sphere are not required to achieve equal edge length. Besides, there is much flexibility in obtaining either the equal area or equilateral geometry in the spherical Goldberg polyhedral subdivisions. Thirdly, this study has discovered two novel Goldberg spherical subdivisions that simultaneously exhibit equal area and equal edge length.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference37 articles.

1. A general rule for disk and hemisphere partition into equal-area cells;Beckers;Computational Geometry,2012

2. Optimizing the arrangement of points on the unit sphere;Berman;Mathematics of Computation,1977

3. Memoire sur la theorie des polyedres;Catalan;Journal De L'école Polytechnique,1865

4. Tiling the sphere with diamonds for texture mapping;Crider,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New families of cage-like structures based on Goldberg polyhedra with non-isolated pentagons;Journal of Computational Design and Engineering;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3