Reimagining space layout design through deep reinforcement learning

Author:

Kakooee Reza1ORCID,Dillenburger Benjamin1

Affiliation:

1. Department of Architecture, Institute of Technology in Architecture, ETH Zurich , 8093 Zurich , Switzerland

Abstract

Abstract Space layout design is a critical aspect of architectural design, influencing functionality and aesthetics. The inherent combinatorial nature of layout design poses challenges for traditional planning approaches; thus, it demands the exploration of novel methods. This paper presents a novel framework that leverages the potential of deep reinforcement learning (RL) algorithms to optimize space layouts. RL has demonstrated remarkable success in addressing complex decision-making problems, yet its application in the design process remains relatively unexplored. We argue that RL is particularly well-suited for the design process due to its ability to accommodate offline tasks and seamless integration with existing computer-aided design software, effectively acting as a simulator for design exploration. Framing space layout design as an RL problem and employing RL methods allows for the automated exploration of the expansive design space, thereby enhancing the discovery of innovative solutions. This paper also elucidates the synergy between the design process and the RL problem, which opens new avenues for exploring the potential of RL algorithms in design. We aim to foster experimentation and collaboration within the RL and architecture communities. To facilitate our research, we have developed SpaceLayoutGym, an environment specifically designed for space layout design tasks. SpaceLayoutGym serves as a customizable environment that encapsulates the essential elements of the layout design process within an RL framework. To showcase the effectiveness of SpaceLayoutGym and the capabilities of RL as an artificial space layout designer, we employ the Proximal Policy Optimization (PPO) algorithm to train the RL agent in selected design scenarios with both geometrical constraints and topological objectives. The study further extends to contrast the effectiveness of PPO agents with that of genetic algorithms, and also includes a comparative analysis with existing layouts. Our results demonstrate the potential of RL to optimize space layouts, offering a promising direction for the future of artificial intelligence-aided design.

Publisher

Oxford University Press (OUP)

Reference38 articles.

1. Generative modelling with design constraints-reinforcement learning for object generation;Akizuki,2020

2. Structured agents for physical construction;Bapst,2019

3. OpenAI Gym;Brockman,2016

4. ArchiGAN: A generative stack for apartment building design;Chaillou,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3