Voyage optimization using dynamic programming with initial quadtree based route

Author:

Choi Gwang-Hyeok1,Lee Wonhee2,Kim Tae-wan1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Research Institute of Marine Systems Engineering, Seoul National University , Seoul 08826 , South Korea

2. Maritime Digital Transformation Research Center, Korea Research Institute of Ships and Ocean Engineering , Daejeon 34103 , South Korea

Abstract

Abstract This research proposes an integrated voyage optimization algorithm that combines quadtree graph generation, visibility graph simplification, Dijkstra’s algorithm, and a 3D dynamic programming (3DDP) method. This approach enables the determination of a minimum distance initial reference route and the creation of a 2D navigational graph for efficient route optimization. We effectively store and process complex terrain information by transforming the GEBCO uniform grid into a quadtree structure. By utilizing a nearest neighbour search algorithm, edges are connected between adjacent ocean nodes, facilitating the generation of a quadtree graph. Applying Dijkstra’s algorithm to the quadtree graph, we derive the shortest initial route and construct a visibility graph based on the waypoints. This results in a simplified reference route with reduced search distance, allowing for more efficient navigation. For each waypoint along the reference route, a boundary is defined angled at 90 degrees to the left and right, based on the waypoint’s reference bearing. A line segment formed by the waypoint and both boundaries is defined as a navigational stage. A navigational graph is defined by connecting adjacent stages. Employing a 3DDP method on the navigational graph, and incorporating weather forecasting data, including wind, wave, and currents, we search for a route that minimizes fuel oil consumption with estimated time of arrival restrictions. Our approach is tested on several shipping routes, demonstrating a fuel consumption reduction compared to other voyage optimization routes. This integrated algorithm offers a potential solution for tackling complex voyage optimization problems in marine environments while considering various weather factors.

Funder

Ministry of Oceans and Fisheries

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference35 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3