An adaptive marine predator algorithm based optimization method for hood lightweight design

Author:

Zhang Chenglin1ORCID,He Zhicheng1,Li Qiqi2,Chen Yong1,Chen Shaowei1,Nie Xin1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University , Changsha 410082 , P. R. China

2. College of Automotive and Mechanical Engineering, Changsha University of Science & Technology , Yuhua District, Changsha 410114, Hunan Province , P. R. China

Abstract

Abstract The lightweight design of the hood is crucial for the structural optimization of an entire vehicle. However, traditional high-fidelity-based lightweight methods are time-consuming due to the complex structures of the hood, and the lightweight results heavily rely on engineering experiences. To this end, an improved adaptive marine predator algorithm (AMPA) is proposed to solve this problem. Compared to the original marine predator algorithm (MPA), the proposed AMPA adapts to optimization problems through three enhancements, including chaotic theory-based initialization, a mixed search strategy, and dynamic partitioning of iteration phases. Experimental comparisons of AMPA, MPA, and eight state-of-the-art algorithms are conducted on IEEE CEC2017 benchmark functions. AMPA outperforms the others in both 30- and 50-dimensional experiments. Friedman and Wilcoxon’s sign-rank tests further confirm AMPA’s superiority and statistical significance. An implicit parametric model of the hood is generated, and the critical design variables are determined through global sensitivity analysis to realize hood lightweight. The stacking method is employed to construct a surrogate meta-model of the hood to accelerate the optimization efficiency of the vehicle hood. Utilizing the meta-model and the proposed AMPA, the hood mass is reduced by 7.43% while all six static and dynamic stiffness metrics are enhanced. The effectiveness of the proposed optimization method is validated through finite element analysis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference82 articles.

1. INFO: An efficient optimization algorithm based on weighted mean of vectors;Ahmadianfar;Expert Systems with Applications,2022

2. Plant intelligence based metaheuristic optimization algorithms;Akyol;Artificial Intelligence Review,2017

3. Chaotic harmony search algorithms;Alatas;Applied Mathematics and Computation,2010

4. Chaotic bee colony algorithms for global numerical optimization;Alatas;Expert Systems with Applications,2010

5. Coronavirus herd immunity optimizer (CHIO);Al-Betar;Neural Computing and Applications,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3