A horizontal and vertical crossover cuckoo search: optimizing performance for the engineering problems

Author:

Su Hang1,Zhao Dong1,Yu Fanhua1,Heidari Ali Asghar2ORCID,Xu Zhangze2,Alotaibi Fahd S3,Mafarja Majdi43,Chen Huiling2ORCID

Affiliation:

1. College of Computer Science and Technology, Changchun Normal University , Changchun, Jilin 130032, China

2. College of Computer Science and Artificial Intelligence, Wenzhou University , Wenzhou, Zhejiang 325035, China

3. Faculty of Computing and Information Technology, King Abdulaziz University , Jeddah 21589, Saudi Arabia

4. Department of Computer Science, Birzeit University , PO Box 14, Birzeit, West Bank, Palestine

Abstract

Abstract As science and technology advance, more engineering-type problems emerge. Technology development has likewise led to an increase in the complexity of optimization problems, and the need for new optimization techniques has increased. The swarm intelligence optimization algorithm is popular among researchers as a flexible, gradient-independent optimization method. The cuckoo search (CS) algorithm in the population intelligence algorithm has been widely used in various fields as a classical optimization algorithm. However, the current CS algorithm can no longer satisfy the performance requirements of the algorithm for current optimization problems. Therefore, in this paper, an improved CS algorithm based on a crossover optimizer (CC) and decentralized foraging (F) strategy is proposed to improve the search ability and the ability to jump out of the local optimum of the CS algorithm (CCFCS). Then, in order to verify the performance of the algorithm, this paper demonstrates the performance of CCFCS from six perspectives: core parameter setting, balance analysis of search and exploitation, the impact of introduced strategies, the impact of population dimension, and comparison with classical algorithms and similar improved algorithms. Finally, the optimization effect of CCFCS on real engineering problems is tested by five classic cases of engineering optimization. According to the experimental results, CCFCS has faster convergence and higher solution quality in the algorithm performance test and maintains the same excellent performance in engineering applications.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Jilin Provincial Department Education

Changchun Normal University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3