The development of nature-inspired gripping system of a flat CFRP strip for stress-ribbon structural layout

Author:

Gribniak Viktor12ORCID,Arnautov Aleksandr K34ORCID,Rimkus Arvydas123ORCID

Affiliation:

1. Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University, Sauletiekio av. 11, Vilnius LT-10223, Lithuania

2. Department of Steel and Composite Structures, Vilnius Gediminas Technical University, Sauletiekio av. 11, Vilnius LT-10223, Lithuania

3. Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenų str. 28, Vilnius LT-08217, Lithuania

4. Institute for Mechanics of Materials, University of Latvia, Aizkraukles str. 23, Riga LV-1006, Latvia

Abstract

Abstract The elegant stress-ribbon systems are efficient in pedestrian bridges and long-span roofs. Numerous studies defined corrosion of the steel ribbons as the main drawback of these structures. Unidirectional carbon fiber-reinforced polymer (CFRP) is a promising alternative to steel because of lightweight, high strength, and excellent corrosion and fatigue resistance. However, the application of CFRP materials faced severe problems due to the construction of the anchorage joints, which must resist tremendous axial forces acting in the stress-ribbons. Conventional techniques, suitable for the typical design of the strips made from anisotropic material such as steel, are not useful for СFRP strips. The anisotropy of СFRP makes it vulnerable to loading in a direction perpendicular to the fibers, shear failure of the matrix, and local stress concentrations. This manuscript proposes a new design methodology of the gripping system suitable for the anchorage of flat strips made from fiber-reinforced polymers. The natural shape of a logarithmic spiral Nautilus shell describes the geometry of the contact surface. The continuous smoothly increasing bond stresses due to friction between the anchorage block and the CFRP strip surface enable the gripping system to avoid stress concentrations. The 3D-printed polymeric prototype mechanical tests proved the proposed frictional anchorage system efficiency and validated the developed analytical model.

Funder

European Regional Development Fund

Research Council of Lithuania

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3