Differential evolution algorithm with improved crossover operation for combined heat and power economic dynamic dispatch problem with wind power

Author:

Li Mengdi1,Zou Dexuan1,Ouyang Haibin2

Affiliation:

1. School of Electrical Engineering and Automation, Jiangsu Normal University , Xuzhou, Jiangsu, 221116 , China

2. School of Mechanical and Electric Engineering, Guangzhou University , Guangzhou, Guangdong, 510006 , China

Abstract

Abstract This paper proposes a differential evolution algorithm with improved crossover operation (ICRDE) to deal with combined heat and power dynamic economic dispatch (CHPDED) problems with wind power. First, the improved crossover operation is used to maintain the population diversity by using original individuals, first mutated individuals, and second mutated individuals. Second, the scaling factor and weighted factor are incorporated into the mutation operation to improve the convergence efficiency of the algorithm. Third, adaptive control parameters are introduced to balance local exploitation and global exploration. Moreover, after being updated by the mutation and crossover operation of ICRDE at each generation, the solutions of ICRDE will be further amended using a constraint handling method, which improves the chance of acquiring feasible solutions. Experimental results demonstrate that ICRDE has strong global optimization ability and surpasses the compared algorithms for the CEC2017 benchmark functions, the combined heat and power economic dispatch problems, and the CHPDED problem with and without wind power.

Funder

Government of Jiangsu Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3