Log-aesthetic curves and their relation to fluid flow patterns in terms of streamlines☆

Author:

Wo Mei Seen1,Gobithaasan R U1,Miura Kenjiro T2,Loy Kak Choon1,Yasmeen Sadaf1,Harun Fatimah Noor1

Affiliation:

1. Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia

2. Department of Information Science and Technology, Shizuoka University, 3-5-1 Jouhoku, Naka-ku, 432-8561, Hamamatsu, Shizuoka, Japan

Abstract

Abstract The log-aesthetic curve (LAC) is a family of aesthetic curves with linear logarithmic curvature graphs (LCGs). It encompasses well-known aesthetic curves such as clothoid, logarithmic spiral, and circle involute. LAC has been playing a pivotal role in aesthetic design. However, its application for functional design is an uncharted territory, e.g. the relationship between LAC and fluid flow patterns may aid in designing better ship hulls and breakwaters. We address this problem by elucidating the relationship between LAC and flow patterns in terms of streamlines at a steady state. We discussed how LAC pathlines form under the influence of pressure gradient via Euler's equation and how LAC streamlines are formed in a special case. LCG gradient ($\alpha $) for implicit and explicit functions is derived, and it is proven that the LCG gradient at the inflection points of explicit functions is always 0 when its third derivative is nonzero. Due to the complexity of the parametric representation of LAC, it is almost impossible to derive the general representation of LAC streamlines. We address this by analyzing the streamlines formed by incompressible flow around an airfoil-like obstacle generated with LAC having various shapes, ${\alpha _r} = \ \{ { - 20,{\rm{\ }} - 5,{\rm{\ }} - 1,{\rm{\ }} - 0.5,{\rm{\ }} - 0.15,{\rm{\ }}0,{\rm{\ }}1,{\rm{\ }}2,{\rm{\ }}3,{\rm{\ }}4,{\rm{\ }}20} \}$, and simulating the streamlines using FreeFem++ reaching a steady state. We found that the LCG gradient of the resultant streamlines is close to that of a clothoid. When the obstacle shape is almost the same as that of a circle ($\alpha \ = \ 20$), the streamlines adjacent to the obstacles have numerous curvature extrema despite nearing steady state. The flow speed variation is the lowest for $\alpha \ = \ - 1.43$ and gets higher as $\alpha$ is increased or decreased from $\alpha \ = \ - 1.43$.

Funder

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference17 articles.

1. Logarithmic curvature graph as a shape interrogation tool;Gobithaasan;Applied Mathematical Sciences,2014

2. An analysis of length, energy and variation energy of log-aesthetic curves;Gobithaasan,2020

3. Optimal path smoothing with log-aesthetic curves based on shortest distance, minimum bending energy or curvature variation energy;Gobithaasan;Computer-Aided Design & Applications,2020

4. An aesthetic curve in the field of industrial design;Harada,1999

5. New development in FreeFem++;Hecht;Journal of Numerical Mathematics,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3