SRPS–deep-learning-based photometric stereo using superresolution images

Author:

Song Euijeong1,Kim Seokjung1,Chung Seok12,Chang Minho3

Affiliation:

1. School of Mechanical Engineering, Korea University, Seoul 02841, Korea

2. KU-KIST Graduate School of Converging Science and Technology, Seoul 02841, Korea

3. Medit Corp., Seoul 02855, Korea

Abstract

Abstract This paper introduces a novel deep-learning-based photometric stereo method that uses superresolution (SR) images: SR photometric stereo. Recent deep-learning-based SR algorithms have yielded great results in terms of enlarging images without mosaic effects. Supposing that the SR algorithms successfully enhance the feature and colour information of original images, implementing SR images using the photometric stereo method facilitates the use of considerably more information on the object than existing photometric stereo methods. We built a novel deep-learning-based network for the photometric stereo technique to optimize the input–output of SR image inputs and normal map outputs. We tested our network using the most widely used benchmark dataset and obtained better results than existing photometric stereo methods.

Funder

National Research Foundation of Korea

MSIT

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference33 articles.

1. Photometric stereo with non-parametric and spatially-varying reflectance;Alldrin,2008

2. PS-FCN: A flexible learning framework for photometric stereo;Chen,2018

3. Deep photometric stereo for non-Lambertian surfaces;Chen;IEEE Transactions on Pattern Analysis and Machine Intelligence,2020

4. A microfacet-based model for photometric stereo with general isotropic reflectance;Chen;IEEE Transactions on Pattern Analysis and Machine Intelligence,2019

5. Learning a deep convolutional network for image super-resolution;Dong,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3