Self-supervised feature matched virtual try-on

Author:

Jiang Shiyi1,Xu Yang12,Li Danyang1,Fan Runze1

Affiliation:

1. College of Big Data and Information Engineering, Guizhou University , Guiyang, 550025 , China

2. Guiyang Aluminum-magnesium Design and Research Institute Co., Ltd. , Guiyang 550009 , China

Abstract

Abstract Virtual try-on is a technology that enables users to preview the effect of wearing a target garment without wearing the actual garment. However, existing image-based virtual try-on methods often require additional human parsing or segmentation operations to generate intermediate representations required for garment deformation and texture fusion. These operations not only increase the computational complexity and memory consumption, but also limit the real-time and portability of virtual try-on. Additionally, inaccurate parsing results can lead to misleading final generated images. To overcome these challenges, we propose a self-supervised feature matched virtual try-on network, which can directly generate high-quality try-on results from human body images and target clothing images without any additional input. Specifically, we design an optical flow warp module, which focuses on the optical flow changes between the person image and the clothing image to achieve accurate clothing alignment and deformation. Furthermore, a feature refine warp module is designed to enhance the features of the extracted optical flow information and the original character segmentation and analysis operations, reducing the influence of background clutter features on the content, and ensuring that the wrinkles and deformation of the replacement clothes are close to the original clothes. The feature match module is developed to calculate the feature matching loss of the converted clothing and the generated results of the teacher network and the student network, and the corresponding knowledge is distilled and passed to the student network to assist in self-supervised training. We conduct experiments on the VITON dataset and show that our model can generate high quality and high resolution, and our proposed method outperforms the state-of-the-art virtual try-on methods both qualitatively and quantitatively.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference37 articles.

1. Rethinking atrous convolution for semantic image segmentation;Chen,2017

2. Synthesizing training images for boosting human 3D pose estimation;Chen,2016

3. VITON-HD: High-resolution virtual try-on via misalignment-aware normalization;Choi,2021

4. ZFlow: Gated appearance flow-based virtual try-on with 3D priors;Chopra,2021

5. Towards multi-pose guided virtual try-on network;Dong,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3