Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems

Author:

Premkumar M1ORCID,Jangir Pradeep2,Sowmya R3,Alhelou Hassan Haes4ORCID,Mirjalili Seyedali56ORCID,Kumar B Santhosh7

Affiliation:

1. Department of Electrical and Electronics Engineering, Dayananda Sager College of Engineering, Bengaluru 560078, Karnataka, India

2. Rajasthan Rajya Vidyut Prasaran Nigam Ltd., Sikar 332025, Rajasthan, India

3. Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India

4. Department of Electrical Power Engineering, Tishreen University, 2230 Lattakia, Syria

5. Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, QLD 4006, Australia

6. Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea

7. Department of Computer Science and Engineering, Guru Nanak Institute of Technology, Hyderabad 501506, Telangana, India

Abstract

ABSTRACT This paper proposes a new Multi-Objective Equilibrium Optimizer (MOEO) to handle complex optimization problems, including real-world engineering design optimization problems. The Equilibrium Optimizer (EO) is a recently reported physics-based metaheuristic algorithm, and it has been inspired by the models used to predict equilibrium state and dynamic state. A similar procedure is utilized in MOEO by combining models in a different target search space. The crowding distance mechanism is employed in the MOEO algorithm to balance exploitation and exploration phases as the search progresses. In addition, a non-dominated sorting strategy is also merged with the MOEO algorithm to preserve the population diversity and it has been considered as a crucial problem in multi-objective metaheuristic algorithms. An archive with an update function is used to uphold and improve the coverage of Pareto with optimal solutions. The performance of MOEO is validated for 33 contextual problems with 6 constrained, 12 unconstrained, and 15 practical constrained engineering design problems, including non-linear problems. The result obtained by the proposed MOEO algorithm is compared with other state-of-the-art multi-objective optimization algorithms. The quantitative and qualitative results indicate that the proposed MOEO provides more competitive outcomes than the different algorithms. From the results obtained for all 33 benchmark optimization problems, the efficiency, robustness, and exploration ability to solve multi-objective problems of the MOEO algorithm are well defined and clarified. The paper is further supported with extra online service and guideline at https://premkumarmanoharan.wixsite.com/mysite.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3