Embedded spectral descriptors: learning the point-wise correspondence metric via Siamese neural networks

Author:

Sun Zhiyu1,He Yusen1,Gritsenko Andrey2,Lendasse Amaury3,Baek Stephen1

Affiliation:

1. Department of Industrial and Systems Engineering, University of Iowa, Iowa City, IA 52242, USA

2. Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA

3. Department of Information and Logistics Technology, University of Houston, Houston, TX 77204, USA

Abstract

Abstract A robust and informative local shape descriptor plays an important role in mesh registration. In this regard, spectral descriptors that are based on the spectrum of the Laplace–Beltrami operator have been a popular subject of research for the last decade due to their advantageous properties, such as isometry invariance. Despite such, however, spectral descriptors often fail to give a correct similarity measure for nonisometric cases where the metric distortion between the models is large. Hence, they are not reliable for correspondence matching problems when the models are not isometric. In this paper, it is proposed a method to improve the similarity metric of spectral descriptors for correspondence matching problems. We embed a spectral shape descriptor into a different metric space where the Euclidean distance between the elements directly indicates the geometric dissimilarity. We design and train a Siamese neural network to find such an embedding, where the embedded descriptors are promoted to rearrange based on the geometric similarity. We demonstrate our approach can significantly enhance the performance of the conventional spectral descriptors by the simple augmentation achieved via the Siamese neural network in comparison to other state-of-the-art methods.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3