A hybrid genetic–firefly algorithm for engineering design problems

Author:

El-Shorbagy M A12ORCID,El-Refaey Adel M3

Affiliation:

1. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

3. Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Smart Village Campus 12577, Egypt

Abstract

Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference115 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3