Partition-based 3 + 2-axis tool path generation for freeform surface machining using a non-spherical tool

Author:

Hao Jiancheng1,Li Zhaoyu1,Li Xiangyu1,Xie Fubao2,He Dong1,Tang Kai134

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China

2. Research Institute of Aero-Engine, Beihang University , Beijing 100191, China

3. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute , Futian, Shenzhen, China

4. HKUST Shenzhen Research Institute , Shenzhen, China

Abstract

Abstract When machining a complex freeform part, using a non-spherical tool could significantly improve the machining efficiency, as one can adaptively adjust the tool posture to maximize its contact area with the part surface. However, since adjusting the tool posture requires changing the tool orientation, a five-axis machine tool is needed, which is extremely expensive as compared to a conventional three-axis machine tool. Moreover, for a complex freeform surface with high curvature variation, to match its curvature change, the tool axis has to drastically change accordingly, thus inducing high velocity and acceleration on the machine tool’s rotary axes. To address these issues, in this paper we propose a partition-based 3 + 2-axis strategy for machining a general complex freeform surface with a non-spherical tool. As only a finite small number of distinct tool orientations are needed for 3 + 2-axis machining, an indexed three-axis machine tool suffices, thus relieving the need of an expensive five-axis machine tool. In addition, the much-increased rigidity of the three linear axes of the machine tool will greatly improve the kinematics and dynamics of the machine tool and thus enhance the machining accuracy. Experiments in both computer simulation and physical machining are carried out, whose results confirm that, when compared to using a conventional spherical cutter, by using a non-spherical cutter and adaptively adjusting the contacting tool posture and the feed direction, significant improvement in machining efficiency could be achieved, e.g., more than 50% achieved in our experiments.

Funder

HKUST

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partition five-axis surface machining of CFRP laminate structures considering fiber orientation;International Journal of Computer Integrated Manufacturing;2024-07-05

2. Efficient cutting path planning for a non-spherical tool based on an iso-scallop height distance field;Chinese Journal of Aeronautics;2023-12

3. Cubic time-spline fitting and interpolation for five-axis CNC machining;Journal of Computational Design and Engineering;2023-11-03

4. Data Transformation for the Optimal Projection Direction of Mesh Surface;2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA);2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3