Ball tracking and trajectory prediction system for tennis robots

Author:

Yang Yoseph1ORCID,Kim David1ORCID,Choi Dongil1ORCID

Affiliation:

1. Department of Mechanical Engineering, Myongji University , 116 Myongji-ro, Yongin, Gyeonggi-do 17058 , Republic of Korea

Abstract

Abstract Recently, as the service robot market has grown, robots have emerged in various fields such as industry, service, and sports. In the field of sports, robots that can play with humans have been developed. We proposed a novel vision system for measuring the trajectory of a tennis ball and predicting its bound position, which can be utilized in the development of tennis robots. In this paper, we introduce a ball detection algorithm using an artificial neural network and a ball trajectory prediction algorithm using stereo vision. Our approach involved the use of a net vision system and a robot vision system to accurately detect and track the ball as it moves across the court. By combining these two systems, we were able to predict the trajectory and bound position of the tennis ball with high accuracy. As a result, the accuracy of the neural network for ball detection in actual tennis images reaches 81.4%. The ball trajectory prediction error in Gazebo simulation is 29.6 cm in the x-axis, 7.2 cm in the y-axis, and 11.7 cm in the z-axis on average.

Funder

National Research Foundation of Korea

NRF

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference28 articles.

1. Object detection and tracking based on trajectory in broadcast tennis video;Archana;Procedia Computer Science,2015

2. The drag coefficient of tennis balls;Chadwick,2000

3. An automatic visual analysis system for tennis;Connaghan;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology,2013

4. Measurements of drag and lift on tennis balls in flight;Cross;Sports Engineering,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm;PLOS ONE;2024-09-06

2. Billiards Hitting Assistance System;Communications in Computer and Information Science;2024

3. Using the YOLO Network's Games Object to Classify Sports;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3