Broken stitch detection system for industrial sewing machines using HSV color space and image processing techniques

Author:

Kim Hyungjung1ORCID,Lee Hyunsu2,Ahn Semin2,Jung Woo-Kyun3,Ahn Sung-Hoon12

Affiliation:

1. Institute of Advanced Machines and Design, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

2. Department of Mechanical Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

3. MFAFA Co., Ltd , 19, Mapo-daero, Mapo-gu, Seoul 04165, Republic of Korea

Abstract

Abstract Sewing defect detection is an essential step in garment production quality control. Although sewing defects significantly influence the quality of clothing, they are yet to be studied widely compared to fabric defects. In this study, to address sewing defect detection and develop an appropriate method for small and labor-intensive garment companies, an on-machine broken stitch detection system is proposed. In hardware, a versatile mounting kit, including clamping, display, and adjustable linkage for a camera, is presented for easy installation on a typical industrial sewing machine and for placing the camera close to the sewing position. Additionally, a prototype is implemented using a low-cost single-board computer, Raspberry Pi 4 B, its camera, and Python language. For automated broken stitch detection, a method is proposed that includes removing the texture of the background fabric, image processing in the HSV color space, and edge detection for robust broken detection under various fabric and thread colors and lighting conditions. The proposed system demonstrates reasonable real-time detection accuracy. The maximum accuracy obtained on a sewing stitch dataset with 880 images and on-site tests of various industrial sewing machines is 82.5%, which is 12.1–34.6% higher than that of the two existing methods.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3