Use of electroencephalogram and long short-term memory networks to recognize design preferences of users toward architectural design alternatives☆

Author:

Chang Sunwoo1,Dong Wonhyeok2,Jun Hanjong2

Affiliation:

1. Garam Architects & Associates, Research and Development Center, Seoul, Republic of Korea, 06037

2. School of Architecture, Hanyang University, Seoul, Republic of Korea, 04763

Abstract

Abstract In this study, we propose an electroencephalogram (EEG)-based long short-term memory networks model for recognizing user preferences toward architectural design images. An EEG is an approach that records the electrical activity in the brain, and EEG-based affection recognition is a technique used for quantitatively recognizing human emotion by analysing the recorded signals. Decision-makers’ subjective reactions toward architectural design alternatives may play a key role in the architectural planning and design stage. In this regard, the proposed model enables the quantitative recognition of their preferences and supports architects in the planning and design stages. The suggested model classifies the recorded data using a deep-learning technique. To build the model, an EEG recording experiment was conducted with 18 subjects, who were asked to select their most/least preferred images among eight images of small-housing design. Post recording, a positive and negative affect schedule questionnaire was distributed to the subjects to rate their affection. Google TensorFlow and Keras were used to structure the model. After training, precision, recall, and f1 score metrics were used to evaluate and validate the model. This model can help designers to evaluate design alternatives in terms of decision-making. Moreover, as this model uses biosignal data, which is universal to humans, architectural design processes for children, the elderly, etc., may be supported. Furthermore, a data-driven design database may be proposed in a future research for cross-validating with previous methods such as interviews and observations.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3