Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN)

Author:

Vania Malinda12ORCID,Lee Deukhee12

Affiliation:

1. Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

2. Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea

Abstract

Abstract Lower back pain is one of the major global challenges in health problems. Medical imaging is rapidly taking a predominant position for the diagnosis and treatment of lower back abnormalities. Magnetic resonance imaging (MRI) is a primary tool for detecting anatomical and functional abnormalities in the intervertebral disc (IVD) and provides valuable data for both diagnosis and research. Deep learning methods perform well in computer visioning when labeled general image training data are abundant. In the practice of medical images, the labeled data or the segmentation data are produced manually. However, manual medical image segmentation leads to two main issues: much time is needed for delineation, and reproducibility is called into question. To handle this problem, we developed an automated approach for IVD instance segmentation that can utilize T1 and T2 images during this study to handle data limitation problems and computational time problems and improve the generalization of the algorithm. This method builds upon mask-RCNN; we proposed a multistage optimization mask-RCNN (MOM-RCNN) for deep learning segmentation networks. We used a multi-optimization training system by utilizing stochastic gradient descent and adaptive moment estimation (Adam) with T1 and T2 in MOM-RCNN. The proposed method showed a significant improvement in processing time and segmentation results compared to previous commonly used segmentation methods. We evaluated the results using several different key performance measures. We obtain the Dice coefficient (99%). Our method can define the IVD’s segmentation as much as 88% (sensitivity) and recognize the non-IVD as much as 98% (specificity). The results also obtained increasing precision (92%) with a low global consistency error (0.03), approaching 0 (the best possible score). On the spatial distance measures, the results show a promising reduction from 0.407 ± 0.067 mm in root mean square error to 0.095 ± 0.026 mm, Hausdorff distance from 12.313 ± 3.015 to 5.155 ± 1.561 mm, and average symmetric surface distance from 1.944 ± 0.850 to 0.49 ± 0.23 mm compared to other state-of-the-art methods. We used MRI images from 263 patients to demonstrate the efficiency of our proposed method.

Funder

Ministry of SMEs and Startups

MOTIE

MSIT

MOHW

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference63 articles.

1. Ischemic stroke lesion segmentation in CT perfusion scans using pyramid pooling and focal loss;Abulnaga;Lecture Notes in Computer Science,2019

2. The 2nd Berlin bedrest study: Protocol and implementation;Belavy;Journal of Musculoskeletal and Neuronal Interactions,2010

3. The prevalence of low back pain in the elderly: A systematic review of the literature;Bressler;Spine,1999

4. Computer-aided diagnosis in the era of deep learning;Chan;Medical Physics,2020

5. 3D intervertebral disc localization and segmentation from MR images by data-driven regression and classification;Chen,2014

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3