Affiliation:
1. Idaho National Laboratory, 2525 N Freemont Avenue, Idaho Falls, ID 83415, USA
2. Oregon State University, School of Nuclear Science and Engineering, 1500 SW Jefferson Street, Corvallis, OR 97331, USA
Abstract
Abstract
In the field of multi-objective optimization, there are a multitude of algorithms from which to choose. Each algorithm has strengths and weaknesses associated with the mechanics for finding the Pareto front. Recently, researchers have begun to examine how multi-agent environments can be used to help solve multi-objective optimization problems. In this work, we propose a multi-objective optimization algorithm based on a multi-agent blackboard system (MABS). The MABS framework allows for multiple agents to read and write pertinent optimization problem data to a central blackboard agent. Agents can stochastically search the design space, use previously discovered solutions to explore local optima, or update and prune the Pareto front. A centralized blackboard framework allows the optimization problem to be solved in a cohesive manner and permits stopping, restarting, or updating the optimization problem. The MABS framework is tested against three alternative optimization algorithms across a suite of engineering design problems and typically outperforms the other algorithms in discovering the Pareto front. A parallelizability study is performed where we find that the MABS is able to evaluate a set number of designs, which require an evaluation time ranging from 0 to 300 seconds, quicker than a traditional optimization algorithm: this fact becomes more apparent the longer it takes to evaluate a design. To provide context for the benefits provided by MABS, a real-world nuclear engineering design problem is examined. MABS is used to examine the placement of experiments in a nuclear reactor, where we are able to evaluate hundreds of configurations for experimental placement while maintaining a strict set of safety constraints.
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献