Adaptive neural network ensemble using prediction frequency

Author:

Lee Ungki1,Kang Namwoo2

Affiliation:

1. Ground Technology Research Institute, Agency for Defense Development , Bugyuseong-daero 488-160, Yuseong-gu, Daejeon 34060 , Republic of Korea

2. Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology , Daejeon 34051 , Republic of Korea

Abstract

AbstractNeural network (NN) ensembles can reduce large prediction variance of NN and improve prediction accuracy. For highly non-linear problems with insufficient data set, the prediction accuracy of NN models becomes unstable, resulting in a decrease in the accuracy of ensembles. Therefore, this study proposes a prediction frequency-based ensemble that identifies core prediction values, which are core prediction members to be used in the ensemble and are expected to be concentrated near the true response. The prediction frequency-based ensemble classifies core prediction values ​​supported by multiple NN models ​​by conducting statistical analysis with a frequency distribution, which is a collection of prediction values ​​obtained from various NN models for a given prediction point. The prediction frequency-based ensemble searches for a range of prediction values that contains prediction values above a certain frequency, and thus the predictive performance can be improved by excluding prediction values with low accuracy ​​and coping with the uncertainty of the most frequent value. An adaptive sampling strategy that sequentially adds samples based on the core prediction variance calculated as the variance of the core prediction values is proposed to improve the predictive performance of the prediction frequency-based ensemble efficiently. Results of various case studies show that the prediction accuracy of the prediction frequency-based ensemble is higher than that of Kriging and other existing ensemble methods. In addition, the proposed adaptive sampling strategy effectively improves the predictive performance of the prediction frequency-based ensemble compared with the previously developed space-filling and prediction variance-based strategies.

Funder

National Research Foundation of Korea

Ministry of Science and ICT of Korea

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference77 articles.

1. State-of-the-art in artificial neural network applications: A survey;Abiodun;Heliyon,2018

2. Mapping of the solar irradiance in the UAE using advanced artificial neural network ensemble;Alobaidi;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014

3. Altair HyperStudy tutorials;Altair,2017

4. An ensemble neural network model for real-time prediction of urban floods;Berkhahn;Journal of Hydrology,2019

5. Neural Networks for Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3