Deposition path-dependent lightweight support design and its implication to self-support topology optimization

Author:

Wang Yifan1,Wu Tao1,Liu Jikai12,Yu Huangchao3

Affiliation:

1. Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University , Jinan 250061, China

2. Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University , Jinan 250061, China

3. College of Intelligent Science and Technology, National University of Defense Technology , Changsha 410073, China

Abstract

Abstract This paper presents a lightweight support design method for material extrusion-type three-dimensional printed panel structures that innovatively involves the deposition path curvature information for support point determination. Specifically, this support design method provides a robust segmentation algorithm to divide the filament deposition paths into segments based on the curvature sign alternating condition, and then searches for the fewest support points for the filaments counting on the experimentally calibrated relationship between the maximum allowable self-support distance and the local mean curvature. The proposed method features in generating thin-walled skeleton-ray styled support structures that are lightweight while providing firm support for the panels. More importantly, the support design method provides a new type of self-support criterion for structural topology optimization involving non-designable planar panels, i.e., only a sparse point set would be sufficient to support the panel. Consequently, more materials could be spent on enhancing the load-bearing capacity instead of being wasted on oversupporting. The achievable structural performances from self-support topology optimization with this new self-support criterion can improve significantly. Support design and printing tests were conducted on a few panel structures that validated the improved support effect compared with equal-volume supports generated by commercial software. Equidistant and gap-free deposited filaments, no filament collapse due to insufficient support, and no isolated voids reflect the improved support effect. The improved self-support topological design was also validated through a comparative numerical case study, and a compliance reduction of 7.76% was achieved.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Shandong University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference55 articles.

1. Structural optimization under overhang constraints imposed by additive manufacturing technologies;Allaire;Journal of Computational Physics,2017

2. Topology Optimization

3. Continuous contour-zigzag hybrid toolpath for large format additive manufacturing;Bi;Additive Manufacturing,2022

4. Filters in topology optimization;Bourdin;International Journal for Numerical Methods in Engineering,2001

5. A tool-path generation strategy for wire and arc additive manufacturing;Ding;International Journal of Advanced Manufacturing Technology,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3