Affiliation:
1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University , Xianning West Road, Xi'an 710049 , China
2. School of Construction Machinery, Chang'an University , Middle-section of Nan'er Huan Road, Xi'an 710064 , China
Abstract
Abstract
The rotation accuracy of a machine tool spindle is essential for ensuring the machining precision. Due to the existence of manufacturing and assembly errors, the rotation accuracy of the spindle will be inevitably impacted and degraded. Therefore, to reduce the influence of the errors and improve the work performance, this paper focuses on accuracy analysis for the spindle and a novel optimization-oriented skin model shape method to tackle this highly complex problem. First, a structural analysis of the spindle is carried out to elaborate the intractable full parallel collections in the assembly. Then, based on the iterative closest point method, the deviation propagation of the spindle considering complex full parallel collections is transformed into an optimization problem, in which the skin model shapes and small displacement torsor are utilized to represent the form and pose errors of the part, respectively. By solving the optimization problem, assembly accuracy analysis for the spindle in terms of full parallel connections and form errors is accordingly achieved. On this basis, the tolerance analysis model of the spindle is also comprehensively established by employing the corresponding error simulation. Finally, measurement experiments are conducted to validate the effectiveness of the proposed method. The experiments show the predicted rotation runout and tolerance magnitude are close to the testing results, therefore indicating the proposed method can provide effective accuracy analysis for spindles.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanxi Provincial Key Research and Development Project
Natural Science Foundation of Shaanxi Province
Natural Science Basic Research Program of Shaanxi Province
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献