Object-oriented integrated algorithms for efficient water pipe network by modified Hardy Cross technique

Author:

Jha Kailash1,Mishra Manish Kumar1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India

Abstract

AbstractIn this work, object-oriented integrated algorithms for an efficient flow analysis of the water pipe network are developed. This is achieved by treating the pipe network as a graph data structure with its nodes as the graph’s nodes and the pipes as the edges. The algorithm for cycle (real cycle or pseudo-cycle) extraction has been developed using nested breadth-first search that gives ordered cycles. Pseudo-loops are found using the shortest path algorithm between the nodes. Pipes are initialized loop by loop using conservation of mass at nodes. A modified Hardy Cross method is used in the proposed work with third-order convergence. The friction factor is updated for every change in discharges. The pressure calculation has been done by the graph traversal algorithm between the reference nodes and node where the pressure is to be calculated using the energy equation. The pressure at all intermediate nodes is obtained in the course of the traversal. Balanced discharges and nodal pressure in the pipe network are compared with the simultaneous loop flow adjustment method and EPANET software. The proposed work gives more efficient flow analysis than the traditional Newton–Raphson-based techniques for complex networks.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference24 articles.

1. Modelling and simulation of water systems based on loop equations;Arsene;International Journal of Simulation,2004

2. Parallel breadth-first search LTL model-checking;Barnat,2003

3. Distributed LTL model checking based on negative cycle detection;Brim,2001

4. Distributed explicit fair cycle detection;Cerna;Proceedings of the 10th International Spin Workshop,2003

5. Memory-efficient algorithms for the verification of temporal properties;Courcoubetis;Formal Methods in System Design,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3