Modified Green–Lindsay thermoelasticity wave propagation in elastic materials under thermal shocks

Author:

Shakeriaski Farshad1,Ghodrat Maryam2ORCID,Escobedo-Diaz Juan2,Behnia Masud3

Affiliation:

1. Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran

2. School of Engineering and Information Technology, University of New South Wales Canberra, Canberra, ACT 2610, Australia

3. Macquarie Business School, Macquarie University, North Ryde, NSW 2109, Australia

Abstract

Abstract In this study, a nonlinear numerical method is presented to solve the governing equations of generalized thermoelasticity in a large deformation domain of an elastic medium subjected to thermal shock. The main focus of the study is on the modified Green–Lindsay thermoelasticity theory, solving strain and temperature rate-dependent model using finite strain theory. To warrant the continuity of the finding responses at the boundary after the applied shock, higher order elements are adopted. An analytical solution is provided to validate the numerical findings and an acceptable agreement between the two presented solutions is obtained. The findings revealed that stress and thermal waves have distinct interactions and a harmonic temperature variation may lead to a systematic uniform stress distribution. Besides, a notable difference in the results predicted by the modified Green–Lindsay model and classic theory is observed. It is also found that the modified Green–Lindsay theory is more efficient in determining the wave propagation phenomenon. Furthermore, the findings established that thermal shock induces tensile stresses in the structure immediately after the shock, and the perceived phenomenon mainly depends on the defined boundary conditions. The results show that the strain rate can have a significant influence on the displacement and stress wave propagation in a structure subjected to thermal shock and these impacts may be more considerable with mechanical loading.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3