Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space

Author:

Zamboj Michal1ORCID

Affiliation:

1. Department of Mathematics and Mathematical Education, Faculty of Education, Charles University, Magdalény Rettigové 4, 116 39 Prague 1, Czech Republic

Abstract

Abstract The Hopf fibration mapping circles on a 3-sphere to points on a 2-sphere is well known to topologists. While the 2-sphere is embedded in 3-space, four-dimensional Euclidean space is needed to visualize the 3-sphere. Visualizing objects in 4-space using computer graphics based on their analytical representations has become popular in recent decades. For purely synthetic constructions, we apply the recently introduced method of visualization of 4-space by its double orthogonal projection onto two mutually perpendicular 3-spaces to investigate the Hopf fibration as a four-dimensional relation without analogy in lower dimensions. In this paper, the method of double orthogonal projection is used for a direct synthetic construction of the fibers of a 3-sphere from the corresponding points on a 2-sphere. The fibers of great circles on the 2-sphere create nested tori visualized in a stereographic projection onto the modeling 3-space. The step-by-step construction is supplemented by dynamic three-dimensional models showing simultaneously the 3-sphere, 2-sphere, and stereographic images of the fibers and mutual interrelations. Each step of the synthetic construction is supported by its analytical representation to highlight connections between the two interpretations.

Funder

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference35 articles.

1. Constant spacing in filament bundles;Atkinson;New Journal of Physics,2019

2. Geometry of Hopf mapping and Pinkall’s tori of given conformal type;Banchoff;Computers in Algebra,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3