Higher order electro-magneto-elastic free vibration analysis of piezomagnetic nano panel

Author:

Wang Guoping1,Hao Huadong2,Arefi Mohammad3

Affiliation:

1. Department of Mechanical Engineering, Xi'an Jiaotong University City College, Xi'an 710018, Shaanxi, China

2. Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan 316013, Zhejiang, China

3. Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran

Abstract

Abstract This paper investigates electro-magneto-elastic free vibration responses of piezomagnetic cylindrical nano panel subjected to electro-magneto-mechanical loads based on third-order theory. Third-order shell theory is used for description of the displacement field. The zero transverse shear strains are obtained using the third-order displacement field. Hamilton’s principle is employed to obtain the governing equations of motion. The nano panel is subjected to a coupling of magnetic and electric loads, including a linear function along with the thickness direction and a 2D function along with the axial and circumferential directions. To account the effect of nanoscale in governing equations, the Eringen nonlocal elasticity theory is used. The numerical results are obtained to investigate the impact of significant parameters such as axial and circumferential mode numbers, the nanoscale parameter, applied electromagnetic potentials, and length-to-radius ratio. It is concluded that an increase in initial electric potential and a decrease in magnetic potential lead to an increase in natural frequencies of the nano panel.

Funder

Scientific research project of Zhejiang Quality and technical supervision system

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3