An approach to automatic boundary segmentation of solid models using virtual topology: toward reconstruction of design features

Author:

Zhang Yingzhong1,Fu Yufei1,Jia Jia1,Luo Xiaofang1

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Abstract Boundary segmentation of solid models is the geometric foundation to reconstruct design features. In this paper, based on the shape evolution analysis for the feature-based modeling process, a novel approach to the automatic boundary segmentation of solid models for reconstructing design features is proposed. The presented approach simulates the designer’s decomposing thinking on how to decompose an existing boundary representation model into a set of design features. First, the modeling traces of design features are formally represented as a set of feature vertex adjacent graphs that use low-dimensional vertex entities and their connection relations. Then, a set of Boolean segmentation loops is searched and extracted from the constructed feature vertex adjacent graphs, which segment the boundary of a solid model into a set of regions with different design feature semantics. In the search process, virtual topology operations are employed to simulate the topological changes resulting from Boolean operations in feature modeling processes. In addition, to realize effective search, search strategies and search algorithms are presented. The segmentation experiments and case study show that the presented approach is feasible and effective for the boundary segmentation of medium-level complex part models. The presented approach lays the foundation for the later reconstruction of design features.

Funder

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference33 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3