A new approach for solving global optimization and engineering problems based on modified sea horse optimizer

Author:

Hashim Fatma A1,Mostafa Reham R23,Khurma Ruba Abu4,Qaddoura Raneem5,Castillo Pedro A6

Affiliation:

1. Faculty of Engineering, Helwan University , Cairo 4262027 , Egypt

2. Research Institute of Sciences and Engineering (RISE), University of Sharjah , Sharjah 27272 , United Arab Emirates

3. Department of Information System, Faculty of Computers and Information Sciences, Mansoura University , Mansoura 35516 , Egypt

4. MEU Research Unit, Faculty of Information Technology, Middle East University , Amman 11831 , Jordan

5. School of Computing and Informatics, Al Hussein Technical University , Amman 11831 , Jordan

6. Department of Computer Engineering, Automatics and Robotics, University of Granada , Granada 18071 , Spain

Abstract

Abstract Sea horse optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced locomotion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random movements with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm named modified sea horse optimizer (mSHO). The enhancement primarily focuses on bolstering SHO’s exploitation capabilities by replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques improve mSHO algorithm’s search capabilities, allowing it to navigate the search space and converge toward optimal solutions efficiently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 benchmark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms to validate the achieved outcomes. Statistical tests, including Wilcoxon’s rank-sum and Friedman’s tests, are aptly applied to discern noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navigating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total rank of 1 for CEC2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value of 0.012 665, 2993.634, 0.01 266, 1.724 967, 263.8915, 0.032 255, 58 507.14, 1.339 956, and 0.23 524 for the pressure vessel design, speed reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, multi-product batch plant, cantilever beam problem, and multiple disc clutch brake problems, respectively. Source codes of mSHO are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.

Funder

Ministerio de Ciencia e Innovación de España

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3