Real-time surgical tool detection in computer-aided surgery based on enhanced feature-fusion convolutional neural network

Author:

Liu Kaidi1,Zhao Zijian1,Shi Pan1,Li Feng2,Song He1

Affiliation:

1. School of Control Science and Engineering, Shandong University , Jinan 250061, China

2. Department of General Surgery, Qilu Hospital of Shandong University , Jinan 250012, China

Abstract

Abstract Surgical tool detection is a key technology in computer-assisted surgery, and can help surgeons to obtain more comprehensive visual information. Currently, a data shortage problem still exists in surgical tool detection. In addition, some surgical tool detection methods may not strike a good balance between detection accuracy and speed. Given the above problems, in this study a new Cholec80-tool6 dataset was manually annotated, which provided a better validation platform for surgical tool detection methods. We propose an enhanced feature-fusion network (EFFNet) for real-time surgical tool detection. FENet20 is the backbone of the network and performs feature extraction more effectively. EFFNet is the feature-fusion part and performs two rounds of feature fusion to enhance the utilization of low-level and high-level feature information. The latter part of the network contains the weight fusion and predictor responsible for the output of the prediction results. The performance of the proposed method was tested using the ATLAS Dione and Cholec80-tool6 datasets, yielding mean average precision values of 97.0% and 95.0% with 21.6 frames per second, respectively. Its speed met the real-time standard and its accuracy outperformed that of other detection methods.

Funder

China's National Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference56 articles.

1. Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks;Al Hajj;Medical Image Analysis,2018

2. Surgical tool detection and tracking in retinal microsurgery;Alsheakhali,2015

3. YOLOv4: Optimal speed and accuracy of object detection;Bochkovskiy,2020

4. Surgical-tools detection based on convolutional neural network in laparoscopic robot-assisted surgery;Choi,2017

5. Articulated multi-instrument 2-D pose estimation using fully convolutional networks;Du;IEEE Transactions on Medical Imaging,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3