Deterministic surface roughness effects on elastic material contact with shear thinning fluid media

Author:

Jang Siyoul1ORCID

Affiliation:

1. School of Automotive Engineering, Kookmin University , 02707  Seoul, Korea

Abstract

Abstract The formation of lubrication films is described using the hydrodynamic lubrication theory, which is based on the Reynolds equation that includes shear thinning behaviors of lubricant. Contacting surfaces are considered to undergo elastic deformation owing to concentrated contact pressures that exceed 1.0 GPa in most engineering applications. Under the contact condition of a high load on a relatively small contact area, elastic deformation of contacting bodies directly influences the formation of the lubricated film. Elastohydrodynamic lubrication (EHL) analysis is applied to correctly analyze the lubricated contact. Under an EHL contact, the scale of the lubrication film thickness is frequently less than that of the surface roughness that results from either the manufacturing or running-in processes. In this work, surface roughness is considered in detail, and two-dimensional surface roughness is measured as that characterizing general engineering surface roughness. The deterministic method regarding the surface roughness is considered for computing EHL film formation under several contact conditions such as load, contact velocity, and elasticity of contacting materials.

Funder

NRF

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3