A temporal–spatiotemporal domain transformation-based modeling method for nonlinear distributed parameter systems

Author:

Jin Xi1,Wu Daibiao1,Yang Haidong1,Zhu Chengjiu1,Shen Wenjing2,Xu Kangkang1

Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology , Guangzhou 510006 , China

2. Sino-German College of Intelligent Manufacturing, Shenzhen Technology University , Shenzhen 518118 , China

Abstract

Abstract Complex nonlinear distributed parameter systems (DPSs) exist widely in advanced industrial thermal processes. The modeling of such highly nonlinear systems is a challenge for traditional time/space-separation-based methods since they employ linear methods for the model reduction and spatiotemporal reconstruction, which may lead to an inefficient application of the nonlinear spatial structure features represented by the spatial basis functions. To overcome this problem, a novel spatiotemporal modeling framework composed of nonlinear temporal domain transformation and nonlinear spatiotemporal domain reconstruction is proposed in this paper. Firstly, local nonlinear dimension reduction based on the locally linear embedding technique is utilized to perform nonlinear temporal domain transformation of the spatiotemporal output of nonlinear DPSs. In this step, the original spatiotemporal data can be directly transformed into low-order time coefficients. Then, the extreme learning machine (ELM) method is utilized to establish a temporal model. Finally, through the spatiotemporal domain reconstruction based on the kernel-based ELM method, the prediction of the temporal dynamics obtained from the temporal model can be reconstructed back to the spatiotemporal output. The effectiveness and performance of the proposed method are demonstrated in experiments on the thermal processes of a snap curing oven and a lithium-ion battery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Foshan Key Field Project of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference35 articles.

1. Laplacian eigenmaps and spectral techniques for embedding and clustering;Belkin;Advances in Neural Information Processing System,2002

2. Spatiotemporal modeling for distributed parameter system under sparse sensing;Chen;Industrial and Engineering Chemistry Research,2020

3. New spatial basis functions for the model reduction of nonlinear distributed parameter systems;Deng;Journal of Process Control,2012

4. Spatial decomposition-based fault detection framework for parabolic-distributed parameter processes;Feng;IEEE Transactions on Cybernetics,2022

5. Backstepping-based distributed abnormality localization for linear parabolic distributed parameter systems;Feng;Automatica,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3