Computational investigation of the post-yielding behavior of 3D-printed polymer lattice structures

Author:

Fadeel Abdalsalam1,Abdulhadi Hasanain1,Newaz Golam2,Srinivasan Raghavan1,Mian Ahsan1ORCID

Affiliation:

1. Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA

2. Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA

Abstract

Abstract Sandwich structures are widely used due to their light weight, high specific strength, and high specific energy absorption. Three-dimensional (3D) printing has recently been explored for creating the lattice cores of these sandwich structures. Experimental evaluation of the mechanical response of lattice cell structures (LCSs) is expensive in time and materials. As such, the finite element analysis (FEA) can be used to predict the mechanical behavior of LCSs with many different design variations more economically. Though there have been several reports on the use of FEA to develop models for predicting the post-yielding stages of 3D-printed LCSs, they are still insufficient to be a more general purpose due to the limitations associated with the lattice prediction behavior of specific features, certain geometries, and common materials along with showing sometimes poor prediction due to the computationally cheap elements out of which these models have been composed in most cases. This study focuses on the response of different LCSs at post-yielding stages based on the hexahedral elements to capture accurately the behaviors of 3D-printed polymeric lattices made of the Acrylonitrile Butadiene Styrene material. For this reason, three types of lattices such as body centered cubic, tetrahedron with horizontal struts, and pyramidal are considered. The FEA models are developed to capture the post-yielding compressive behavior of these different LCSs. These models are used to understand and provide detailed information of the failure mechanisms and relation between post-yielding deformations and the topologies of the lattice. All of these configurations were tested before experimentally during compression in the z-direction under quasi-static conditions and are compared here with the FEA results. The post-yielding behavior obtained from FEA matches reasonably well with the experimental observations, providing the validity of the FEA models.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference54 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3