Frequency-focused sound data generator for fault diagnosis in industrial robots

Author:

Ahn Semin1,Yoo Jinoh1,Lee Kyu-Wha1,Youn Byeng Dong12ORCID,Ahn Sung-Hoon13

Affiliation:

1. Department of Mechanical Engineering, Seoul National University , Seoul 08826 , Republic of Korea

2. OnePredict Inc. , Seoul 06160 , Republic of Korea

3. Institute of Advanced Machines and Design, Seoul National University , Seoul 08826 , Republic of Korea

Abstract

Abstract A frequency-focused sound data generator was developed for the in situ fault sound diagnosis of industrial robot reducers. The sound data generator, based on a conditional generative adversarial network, selects a target frequency range without relying on domain knowledge. A sound dataset of normal and faulty harmonic drive rotations of in situ industrial robots was collected using an attachable wireless sound sensor. The generated sound data were evaluated based on the fault diagnosis accuracy of a simple classifier trained using the generated data and tested using real data. The proposed method well-defined the frequency feature clusters and produced high-quality data, exhibiting up to 16.0% higher precision score on normal and 13.0% higher accuracy on weak-fault harmonic drive compared with the conventional methods, achieving fault diagnosis accuracy of 95.6% even in situations of fault data comprising only 5% of the normal data.

Funder

National Research Foundation of Korea

MSIT

Publisher

Oxford University Press (OUP)

Reference48 articles.

1. Wasserstein generative adversarial networks;Arjovsky,2017

2. Pros and cons of GAN evaluation measures: New developments;Borji;Computer Vision and Image Understanding,2022

3. SMOTE: Synthetic minority over-sampling technique;Chawla;Journal of Artificial Intelligence Research,2002

4. Compound fault diagnosis for industrial robots based on dual-transformer networks;Chen;Journal of Manufacturing Systems,2023

5. Dynamic vision enabled contactless cross-domain machine fault diagnosis with neuromorphic computing;Chen;IEEE-CAA Journal of Automatica Sinica,2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3