Kernel Regularized Least Squares: Reducing Misspecification Bias with a Flexible and Interpretable Machine Learning Approach

Author:

Hainmueller Jens,Hazlett Chad

Abstract

We propose the use of Kernel Regularized Least Squares (KRLS) for social science modeling and inference problems. KRLS borrows from machine learning methods designed to solve regression and classification problems without relying on linearity or additivity assumptions. The method constructs a flexible hypothesis space that uses kernels as radial basis functions and finds the best-fitting surface in this space by minimizing a complexity-penalized least squares problem. We argue that the method is well-suited for social science inquiry because it avoids strong parametric assumptions, yet allows interpretation in ways analogous to generalized linear models while also permitting more complex interpretation to examine nonlinearities, interactions, and heterogeneous effects. We also extend the method in several directions to make it more effective for social inquiry, by (1) deriving estimators for the pointwise marginal effects and their variances, (2) establishing unbiasedness, consistency, and asymptotic normality of the KRLS estimator under fairly general conditions, (3) proposing a simple automated rule for choosing the kernel bandwidth, and (4) providing companion software. We illustrate the use of the method through simulations and empirical examples.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Reference40 articles.

1. Solution of incorrectly formulated problems and the regularization method;Tychonoff;Doklady Akademii Nauk SSSR,1963

2. In addition, by choosing the Gaussian kernel, KRLS is made similar to Gaussian process regression, in which each point (yi ) is assumed to be a normally distributed random variable, and part of a joint normal distribution together with all other yj , with the covariance between any two observations yi, yj (taken over the space of possible functions) being equal to k(xi, xj ).

3. This powerful result is more directly shown by the Representer theorem (Kimeldorf and Wahba 1970).

4. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3