A Selection Bias Approach to Sensitivity Analysis for Causal Effects

Author:

Blackwell Matthew

Abstract

The estimation of causal effects has a revered place in all fields of empirical political science, but a large volume of methodological and applied work ignores a fundamental fact: most people are skeptical of estimated causal effects. In particular, researchers are often worried about the assumption of no omitted variables or no unmeasured confounders. This article combines two approaches to sensitivity analysis to provide researchers with a tool to investigate how specific violations of no omitted variables alter their estimates. This approach can help researchers determine which narratives imply weaker results and which actually strengthen their claims. This gives researchers and critics a reasoned and quantitative approach to assessing the plausibility of causal effects. To demonstrate the approach, I present applications to three causal inference estimation strategies: regression, matching, and weighting.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Reference39 articles.

1. Counterfactuals and Causal Inference

2. One can use an alternative scaling such as dividing by the standard deviation of Yi (0) to eliminate this baseline model and still retain comparability.

3. It is important to note that simply varying the specification of a statistical model is not a good substitute for a formal sensitivity analysis. This might gauge how small perturbations to the statistical model may change estimates, but it does not provide any formal quantification of our uncertainty due to bias.

4. And in some cases, these categories overlap in the sense that one method can be rewritten as a special case of another.

5. Conditional independence in statistical theory;Dawid;Journal of the Royal Statistical Society. Series B (Methodological),1979

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3