Affiliation:
1. Department of Biochemistry and Molecular Biology, College of Basic Medical Science
2. Department of Emergency, Southwest Hospital
3. Department of Chemistry, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, China
Abstract
Abstract
Objectives
Long non-coding RNA H19 (lncRNA-H19) is highly expressed in fibroblast-like synoviocytes (FLS) from patients with RA. The present study aimed to clarify the pathological significance and regulatory mechanisms of lncRNA-H19 in FLS.
Methods
Mice with CIA were locally injected with LV-shH19. The progression of CIA was explored by measuring arthritic index (AI), paw thickness (PT) and histologic analysis. The growth and cell cycle of human synoviocyte MH7A were assessed by CCK-8 and flow cytometric analysis. The putative binding sites between lncRNA-H19 and miR-124a were predicted online, and the binding was identified by luciferase assay. RT-qPCR, Western blot and luciferase assay were performed to explore the molecular mechanisms between liver X receptor (LXR), lncRNA-H19, miR-124a and its target genes.
Results
The expression of lncRNA-H19 was closely associated with the proliferation of synoviocytes and knockdown of lncRNA-H19 significantly ameliorated the progression of CIA, reflected by decreased AI, PT and cartilage destruction. Notably, lncRNA-H19 competitively bound to miR-124a, which directly targets CDK2 and MCP-1. It was confirmed that lncRNA-H19 regulates the proliferation of synoviocytes by acting as a sponge of miR-124a to modulate CDK2 and MCP-1 expression. Furthermore, the agonists of LXR inhibited lncRNA-H19-mediated miR-124a-CDK2/MCP-1 signalling pathway in synoviocytes. The ‘lncRNA-H19-miR-124a-CDK2/MCP-1’ axis plays an important role in LXR anti-arthritis.
Conclusion
Regulation of the miR-124a-CDK2/MCP-1 pathway by lncRNA-H19 plays a crucial role in the proliferation of FLS. Targeting this axis has therapeutic potential in the treatment of RA and may represent a novel strategy for RA treatment.
Funder
National Natural Science Foundation of China
Advanced Interdisciplinary Studies Foundation of Basic Medical Science
Key Support Object of AMU
Publisher
Oxford University Press (OUP)
Subject
Pharmacology (medical),Rheumatology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献