Use of platelet inhibitors for digital ulcers related to systemic sclerosis: EUSTAR study on derivation and validation of the DU-VASC model

Author:

Garaiman Alexandru1,Steigmiller Klaus2,Gebhard Catherine3,Mihai Carina1,Dobrota Rucsandra1,Bruni Cosimo14,Matucci-Cerinic Marco456,Henes Joerg7ORCID,de Vries-Bouwstra Jeska8,Smith Vanessa910ORCID,Doria Andrea11ORCID,Allanore Yannick12,Dagna Lorenzo56,Anić Branimir13,Montecucco Carlomaurizio14,Kowal-Bielecka Otylia15,Martin Mickael16,Tanaka Yoshiya17ORCID,Hoffmann-Vold Anna-Maria18ORCID,Held Ulrike2ORCID,Distler Oliver1ORCID,Becker Mike Oliver1ORCID,Randone Silvia Bellando,Lepri Gemma,Walker Ulrich,Iannone Florenzo,Jordan Suzana,Becvar Radim,Gindzienska-Sieskiewicz Ewa,Karaszewska Katarzyna,Cutolo Maurizio,Cuomo Giovanna,Siegert Elise,Rednic Simona,Avouac Jérome,Desbas Carole,Caporali Roberto,Cavagna Lorenzo,Carreira Patricia E,Novak Srdan,Czirják László,Iudici Michele,Kucharz Eugene J,Zanatta Elisabetta,Coleiro Bernard,Moroncini Gianluca,Bancel Dominique Farge,Airò Paolo,Hesselstrand Roger,Radic Mislav,Balbir-Gurman Alexandra,Hunzelmann Nicolas,Pellerito Raffaele,Giollo Alessandro,Morovic-Vergles Jadranka,Denton Christopher,Damjanov Nemanja,Pecher Ann-Christian,Santamaria Vera Ortiz,Heitmann Stefan,Krasowska Dorota,Hasler Paul,Foeldvari Ivan,Salvador Maria João,Stamenkovic Bojana,Selmi Carlo Francesco,Ananieva Lidia P,Herrick Ariane,Müller-Ladner Ulf,De Palma Raffaele,Engelhart Merete,Szücs Gabriela,de la Puente Carlos,Midtvedt Øyvind,Garen Torhild,Fretheim Håvard,Hachulla Eric,Riccieri Valeria,Ionescu Ruxandra Maria,Gheorghiu Ana Maria,Sunderkötter Cord,Distler Jörg,Ingegnoli Francesca,Mouthon Luc,Cantatore Francesco Paolo,Ullman Susanne,Pozzi Maria Rosa,Eyerich Kilian,Wiland Piotr,Vanthuyne Marie,Alegre-Sancho Juan Jose,Herrmann Kristine,De Langhe Ellen,Baresic Marko,Mayer Miroslav,Yavuz Sule,Granel Brigitte,de Souza Müller Carolina,Agachi Svetlana,Stebbings Simon,Mathieu D'Alessandro,Vacca Alessandra,Solanki Kamal,Veale Douglas,Loyo Esthela,Tineo Carmen,Li Mengtao,Rosato Edoardo,Oksel Fahrettin,Yargucu Figen,Tanaseanu Cristina-Mihaela,Foti Rosario,Ancuta Codrina,Maurer Britta,van Laar Jacob,Olesinska Marzena,Kayser Cristiane,Fathi Nihal,de la Peña Lefebvre Paloma García,Martin Jorge Juan Gonzalez,Sibilia Jean,Litinsky Ira,Del Galdo Francesco,Saketkoo Lesley Ann,Kerzberg Eduardo,Bianch Washington,Bianchi Breno Valdetaro,Castellví Ivan,Limonta Massimiliano,Rimar Doron,Couto Maura,Spertini François,Marcoccia Antonella,Kahl Sarah,Hsu Ivien M,Martin Thierry,Moiseevand Sergey,Novikov Pavel,Chung Lorinda S,Schmeiser Tim,Majewski Dominik,Zdrojewski Zbigniew,Martínez-Barrio Julia,Bernardino Vera,Riemekasten Gabriela,Levy Yair,Rezus Elena,Pamuk Omer Nuri,Puttini Piercarlo Sarzi,Poormoghim Hadi,Kötter Ina,Cuomo Giovanna,Gaches Francis,Belloli Laura,Sfikakis Petros,Furst Daniel,Ramazan Ana-Maria,Scherer H U,Huizinga Tom W J,Truchetet Marie-Elise,Lescoat Alain,De Luca Giacomo,Campochiaro Corrado,van Laar J M,Rudnicka Lidia,Oliveira Susana,Atzeni Fabiola,Kuwana Masataka,Mekinian Arsene,Landron Cédric,Puyade Mathieu,Roblot Pascal,Kubo Satoshi,Todoroki Yasuyuki,

Affiliation:

1. Department of Rheumatology, University Hospital Zurich

2. Epidemiology, Biostatistics and Prevention Institute, Department of Biostatistics

3. Department of Nuclear Medicine, University Hospital Zurich, Center for Molecular Cardiology, University of Zurich , Zurich, Switzerland

4. Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, AOUC , Florence

5. Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute

6. Faculty of Medicine and Surgery of the Vita-Salute San Raffaele University , Milan, Italy

7. Centre for Interdisciplinary Clinical Immunology, Rheumatology and Autoinflammatory Diseases and Department of Internal Medicine II (Hematology, Oncology, Immunology and Rheumatology), University Hospital Tuebingen , Tuebingen, Germany

8. Department of Rheumatology, Leiden University Medical Center , Leiden, The Netherlands

9. Department of Internal Medicine, Ghent University

10. Department of Rheumatology, Ghent University Hospital , Ghent, Belgium

11. Rheumatology Unit, Department of Medicine, University of Padova , Padova, Italy

12. Department of Rheumatology A, Descartes University, APHP, Cochin Hospital , Paris, France

13. Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital Centre Zagreb and University of Zagreb, School of Medicine , Zagreb, Croatia

14. Department of Rheumatology, Fondazione IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy

15. Department of Rheumatology and Internal Medicine, Medical University of Bialystok , Bialystok, Poland

16. Internal Medicine, Poitiers University Hospital , Poitiers, France

17. The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan , Kitakyushu, Japan

18. Department of Rheumatology, Oslo University Hospital , Oslo, Norway

Abstract

Abstract Objective To develop and validate the prognostic prediction model DU-VASC to assist the clinicians in decision-making regarding the use of platelet inhibitors (PIs) for the management of digital ulcers in patients with systemic sclerosis. Secondly, to assess the incremental value of PIs as predictor. Methods We analysed patient data from the European Scleroderma Trials and Research group registry (one time point assessed). Three sets of derivation/validation cohorts were obtained from the original cohort. Using logistic regression, we developed a model for prediction of digital ulcers (DUs). C-Statistics and calibration plots were calculated to evaluate the prediction performance. Variable importance plots and the decrease in C-statistics were used to address the importance of the predictors. Results Of 3710 patients in the original cohort, 487 had DUs and 90 were exposed to PIs. For the DU-VASC model, which includes 27 predictors, we observed good calibration and discrimination in all cohorts (C-statistic = 81.1% [95% CI: 78.9%, 83.4%] for the derivation and 82.3% [95% CI: 779.3%, 85.3%] for the independent temporal validation cohort). Exposure to PIs was associated with absence of DUs and was the most important therapeutic predictor. Further important factors associated with absence of DUs were lower modified Rodnan skin score, anti-Scl-70 negativity and normal CRP. Conversely, the exposure to phosphodiesterase-5 inhibitor, prostacyclin analogues or endothelin receptor antagonists seemed to be associated with the occurrence of DUs. Nonetheless, previous DUs remains the most impactful predictor of DUs. Conclusion The DU-VASC model, with good calibration and discrimination ability, revealed that PI treatment was the most important therapy-related predictor associated with reduced DU occurrence.

Funder

Gruppo Italiano Lotta alla Sclerodermia

European Scleroderma Trials and Research Group

Scleroderma Clinical Trials Consortium

AbbVie

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Rheumatology

Reference20 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3