Apremilast inhibits inflammatory osteoclastogenesis

Author:

Degboé Yannick12,Sunzini Flavia1,Sood Shatakshi1,Bozec Aline3,Sokolova Maria V34,Zekovic Ana34,McInnes Iain B1,Schett Georg34,Goodyear Carl S1ORCID

Affiliation:

1. Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK

2. Toulouse University Hospital, Toulouse, France

3. Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany

4. Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany

Abstract

Abstract Objectives Psoriatic arthritis (PsA) is associated with bone erosion and inflammation-induced bone loss, which are mediated by osteoclasts (OC) and modulated by inflammatory cytokines. Apremilast (APR) (a selective phosphodiesterase 4 inhibitor) is efficacious in PsA and acts by inhibiting cytokine production. However, there are no direct data informing whether and how APR affects osteoclast formation in humans. Methods Osteoclastogenic cytokine production by activated human peripheral blood mononuclear cells (PBMCs) was measured in the presence and absence of APR. Effects of APR on osteoclast differentiation were tested (i) in co-cultures of activated PBMCs and human CD14+ blood monocytes as well as (ii) in CD14+ blood monocytes stimulated with activated-PBMCs supernatant, TNF or IL-17A. Bone resorption was measured on OsteoAssay plates. Effects of APR on ex vivo osteoclast differentiation were compared in PsA, pre-PsA and psoriasis patients, as well as in healthy controls. Results APR significantly impaired the expression of key osteoclastogenic cytokines in activated PBMCs. Furthermore, APR dose-dependently and significantly inhibited activated PBMC-driven osteoclast differentiation and ex vivo osteoclast differentiation of PBMCs derived from PsA and pre-PsA patients, but not from psoriasis patients or healthy controls. TNF and IL-17A-enhanced osteoclastogenesis and osteolytic activity of CD14+ blood monocytes from PsA patients was also significantly inhibited by APR. Finally, APR inhibited expression of the key osteoclast fusion protein dendritic cell-specific transmembrane protein. Conclusion Phosphodiesterase 4 targeting by APR not only inhibits osteoclastogenic cytokine production, but also directly suppresses inflammation-driven osteoclastogenesis. These data provide initial evidence that APR has the potential to provide a direct bone protective effect in PsA.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

PARTNER fellowship

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3