Prognostic value of automated assessment of interstitial lung disease on CT in systemic sclerosis

Author:

Le Gall Aëlle1,Hoang-Thi Trieu-Nghi2,Porcher Raphaël34,Dunogué Bertrand1,Berezné Alice1,Guillevin Loïc13,Le Guern Véronique1,Cohen Pascal1,Chaigne Benjamin13ORCID,London Jonathan1ORCID,Groh Matthieu1,Paule Romain1ORCID,Chassagnon Guillaume23,Vakalopoulou Maria5,Dinh-Xuan Anh-Tuan6,Revel Marie Pierre23,Mouthon Luc13,Régent Alexis13

Affiliation:

1. Service de Médecine Interne, Centre de Référence Maladies Auto-Immunes et Systémiques Rares d’ile de France, APHP-CUP, Hôpital Cochin , Paris, France

2. Service de Radiologie, APHP-CUP, Hôpital Cochin , Paris, France

3. Université de Paris , Paris, France

4. Service d’Epidémiologie Clinique, Hôpital Hôtel Dieu, AP-HP , Paris, France

5. Centre de Vision Numérique, École Centrale Supelec , Gif-sur-Yvette, France

6. Service de Physiologie et Explorations Fonctionnelles, Hôpital Cochin, AP-HP , Paris, France

Abstract

Abstract Objective Stratifying the risk of death in SSc-related interstitial lung disease (SSc-ILD) is a challenging issue. The extent of lung fibrosis on high-resolution CT (HRCT) is often assessed by a visual semiquantitative method that lacks reliability. We aimed to assess the potential prognostic value of a deep-learning–based algorithm enabling automated quantification of ILD on HRCT in patients with SSc. Methods We correlated the extent of ILD with the occurrence of death during follow-up, and evaluated the additional value of ILD extent in predicting death based on a prognostic model including well-known risk factors in SSc. Results We included 318 patients with SSc, among whom 196 had ILD; the median follow-up was 94 months (interquartile range 73–111). The mortality rate was 1.6% at 2 years and 26.3% at 10 years. For each 1% increase in the baseline ILD extent (up to 30% of the lung), the risk of death at 10 years was increased by 4% (hazard ratio 1.04, 95% CI 1.01, 1.07, P = 0.004). We constructed a risk prediction model that showed good discrimination for 10-year mortality (c index 0.789). Adding the automated quantification of ILD significantly improved the model for 10-year survival prediction (P = 0.007). Its discrimination was only marginally improved, but it improved prediction of 2-year mortality (difference in time-dependent area under the curve 0.043, 95% CI 0.002, 0.084, P = 0.040). Conclusion The deep-learning–based, computer-aided quantification of ILD extent on HRCT provides an effective tool for risk stratification in SSc. It might help identify patients at short-term risk of death.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3