Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus

Author:

Jang Se Gwang12,Lee Jaeseon1,Hong Seung-Min1,Kwok Seung-Ki13,Cho Mi-La1,Park Sung-Hwan132

Affiliation:

1. The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea

2. Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea

3. Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Abstract

Abstract Objectives Mesenchymal stem cells (MSCs) are considered potential therapeutic agents for treating autoimmune disease because of their immunomodulatory capacities and anti-inflammatory effects. However, several studies have shown that there is no consistency in the effectiveness of the MSCs to treat autoimmune disease, including SLE. In this study, we investigated whether metformin could enhance the immunoregulatory function of MSCs, what mechanism is relevant, and whether metformin-treated MSCs could be effective in an animal lupus model. Methods Adipose-derived (Ad)-MSCs were cultured for 72 h in the presence of metformin. Immunoregulatory factors expression was analysed by real-time PCR and ELISA. MRL/lpr mice weekly injected intravenously with 1 × 106 Ad-MSCs or metformin-treated Ad-MSCs for 8 weeks. 16-week-old mice were sacrificed and proteinuria, anti-dsDNA IgG antibody, glomerulonephritis, immune complex, cellular subset were analysed in each group. Results Metformin enhanced the immunomodulatory functions of Ad-MSCs including IDO, IL-10 and TGF-β. Metformin upregulated the expression of p-AMPK, p-STAT1 and inhibited the expression of p-STAT3, p-mTOR in Ad-MSCs. STAT1 inhibition by siRNA strongly diminished IDO, IL-10, TGF-β in metformin-treated Ad-MSCs. As a result, metformin promoted the immunoregulatory effect of Ad-MSCs by enhancing STAT1 expression, which was dependent on the AMPK/mTOR pathway. Administration of metformin-treated Ad-MSCs resulted in significant disease activity improvement including inflammatory phenotype, glomerulonephritis, proteinuria and anti-dsDNA IgG antibody production in MRL/lpr mice. Moreover, metformin-treated Ad-MSCs inhibited CD4-CD8- T-cell expansion and Th17/Treg cell ratio. Conclusion Metformin optimized the immunoregulatory properties of Ad-MSCs and may be a novel therapeutic agent for the treatment of lupus.

Funder

Korea Health Technology R&D Project

Korea Health Industry Development Institute

KHIDI

Ministry of Health & Welfare

Basic Science Research Program

National Research Foundation of Korea

NRF

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3