Dynamic permeability in porous media and identification of pore fluids by using borehole Stoneley wave

Author:

Peng Fan123,Zhang Xiumei123,Wang Xiuming123,Chen Hao123

Affiliation:

1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China

2. University of Chinese Academy of Sciences, Beijing, 100049, China

3. Beijing Engineering Research Center of Sea Deep Drilling and Exploration, Beijing, 100190, China

Abstract

Abstract The sound field in porous media is affected by fluid flow governed by dynamic permeability. This macroscopic quantity is frequency dependent and can be connected with a relevant pore-scale estimation called the stochastic dynamic permeability (SDP) model. To further investigate the characteristics of the SDP model with different variables related to Biot relaxation frequency and envisage its potential applications in borehole acoustics, the influence of microstructures from a pore-scale image on dynamic permeability is studied. Then, the characteristics of dynamic permeability and a borehole Stoneley wave with different parameters are explored by sensitivity analysis. According to the influences of pore fluid parameters including density and viscosity, the velocity dispersion and attenuation of Stoneley waves in oil, gas and water-bearing formations are calculated. The results show that the dynamic permeability is affected by the microstructure of pores and the Biot relaxation frequency parameters have a crucial influence on the attenuation of the borehole Stoneley wave. Meanwhile, the attenuation coefficient can be used to identify the type of pore fluids. This is verified by an application to in situ acoustic logging data. The work provides a relatively comprehensive understanding of the features of the SDP dynamic permeability and indicates an approach to identify pore fluid by using a borehole Stoneley wave.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3